Solution Math 220 HW # 11 December 7, 2018

Exercise 1. Let $A = \{0, 1, 2, 3\}$ and let $R = \{(0, 1), (0, 2), (1, 1), (1, 3), (2, 2), (3, 0)\}$ be a relation on A. Find the transitive closure of R.

Solution.

$$R^{t} = R \cup \{(0,3), (1,0), (3,1), (3,2), (3,3), (0,0), (1,2)\}.$$

Exercise 2. Suppose R and S are binary relations on a set A.

(a) If R and S are reflexive, is $R \cap S$ reflexive? Why?

(b) If R and S are symmetric, is $R \cap S$ symmetric? Why?

(c) If R and S are transitive, is $R \cap S$ transitive? Why?

Proof.

- (a) Let $x \in A$. Since R and S are reflexive, $(x, x) \in R$ and $(x, x) \in S$. Therefore $(x, x) \in R \cap S$, and so $R \cap S$ is reflexive.
- (b) Suppose $(x, y) \in R \cap S$. Then $(x, y) \in R$ and $(x, y) \in S$. Since R and S are symmetric, it follows that $(y, x) \in R$ and $(y, x) \in S$, hence $(y, x) \in R \cap S$. Therefore $R \cap S$ is symmetric.
- (c) Suppose $(x, y), (y, z) \in R \cap S$. Then $(x, y), (y, z) \in R$ and $(x, y), (y, z) \in S$. Since R and S are both transitive, it follows that $(x, z) \in R$ and $(x, z) \in S$, hence $(x, z) \in R \cap S$. Therefore $R \cap S$ is transitive.

Exercise 3. Suppose R and S are binary relations on a set A.

(a) If R and S are reflexive, is $R \cup S$ reflexive? Why?

(b) If R and S are symmetric, is $R \cup S$ symmetric? Why?

(c) If R and S are transitive, is $R \cup S$ transitive? Why? Proof.

- (a) Let $x \in A$. Since R and S are reflexive, $(x, x) \in R$ and $(x, x) \in S$. Therefore $(x, x) \in R \cup S$, and so $R \cup S$ is reflexive.
- (b) Suppose $(x, y) \in R \cup S$. Then $(x, y) \in R$ or $(x, y) \in S$. Without loss of generality, assume $(x, y) \in R$. Then it follows that $(y, x) \in R$ since R is symmetric, hence $(y, x) \in R \cup S$. Therefore $R \cup S$ is symmetric.

(c) $R \cup S$ is not transitive. Suppose $A = \{1, 2, 3\}, R = \{(1, 2), (2, 1), (1, 1), (2, 2)\}$, and $S = \{(1, 3), (3, 1), (1, 1), (3, 3)\}$. This R and S are transitive. Then $(2, 1), (1, 3) \in R \cup S$, but $(2, 3) \notin R \cup S$ since it is not in R or S. Therefore $R \cup S$ is not transitive.

Exercise 4. Define the relation S on \mathbb{R} by xSy if and only if x - y is an integer. Show that S is an equivalence relation. *Proof.*

<u>Reflexive</u>: Let $x \in \mathbb{R}$. Then since x - x = 0 is an integer, xSx. Therefore S is reflexive.

Symmetric: Let $x, y \in \mathbb{R}$ and suppose xSy. Then there is an integer k such that x - y = k. Then y - x = -(x - y) = -k, hence $y \sim x$.

<u>Transitive</u>: Let $x, y, z \in \mathbb{R}$ and suppose xSy and ySz. Then there are integers $k, l \in \mathbb{Z}$ such that x - y = k and y - z = l. Adding these expressions gives

$$(x - y) + (y - z) = x - z = k + l.$$

Thus x - z is an integer and xSz.

Therefore S is an equivalence relation.

Exercise 5. Consider the following partition of the set $\{0, 1, 2, 3, 4\}$:

$$\mathcal{P} = \{\{0, 2\}, \{1\}, \{3, 4\}\}$$

What is the relation R that is induced by this partition? (Give R as a set of ordered pairs.) Solution.

$$R = \{(0,0), (0,2), (2,0), (2,2), (1,1), (3,3), (3,4), (4,3), (4,4)\}.$$

Exercise 6. Let $A = \{1, 2, 3, 4, ..., 20\}$. An equivalence relation, \sim , is defined on A by

 $x \sim y$ if and only if 4|(x - y).

Find the distinct equivalence classes of \sim .

Solution. Begin with finding the equivalence class of 1. It consists of all numbers whose difference with 1 is divisible by 4.

$$[1] = \{1, 5, 9, 13, 17\}.$$

Since 2 isn't in this equivalence class, let's find it's equivalence class.

$$[2] = \{2, 6, 10, 14, 18\}.$$

3 hasn't been in an equivalence class so far, so find it's equivalence class.

$$[3] = \{3, 7, 11, 15, 19\}.$$

$$[4] = \{4, 8, 12, 16, 20\}$$

Since every number above 4 is already in one of the above equivalence classes, [1], [2], [3], and [4] are the distinct equivalence classes.

Exercise 7. Let \sim be the relation of congruence modulo 3. Which of the following equivalence classes are equal?

[7], [-4], [-6], [17], [4], [27], [19].

Make sure to say why they are equal!

Solution. Since 7 - 4 = 3 is divisible by 3, we know $7 \sim 4$, so [7] = [4]. Since 7 - 19 = -12 is divisible by 3, we have $7 \sim 19$, so [7] = [19].

Since -4 - 17 = -21 is divisible by 3, we have $-4 \sim 17$, so [-4] = [17].

Since -6 - 27 = -33 which is divisible by 3, we have $-6 \sim 27$, so [-6] = [27].

So we have [7] = [4] = [19], [-4] = [17], and [-6] = [27].

Exercise 8.

- (a) Create an addition and multiplication table for \mathbb{Z}_5 .
- (b) Create an addition and multiplication table for \mathbb{Z}_6 .
- (c) In the multiplication tables, there is one big difference between \mathbb{Z}_5 and \mathbb{Z}_6 , what is that difference?

Solution.

(a) For \mathbb{Z}_5 , the addition table is

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

and the multiplication table is

•	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

(b) For \mathbb{Z}_6 , the addition table is

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

and the multiplication table is

•	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

(c) There are multiple things you could point out here, but the biggest deal is that in \mathbb{Z}_6 , we can multiply two nonzero numbers and get 0 as the product, whereas that does not happen in \mathbb{Z}_5 . The numbers 2, 3, and 4 are called *zero divisors* in \mathbb{Z}_6 .